Lecture 17. Mechanical Vibrations Part 2

Lecture 17. Mechanical Vibrations Part 2

Forced Oscillations Undamped Forced Oscillations Resonance **Damped Forced Oscillations** Exercises Related to WebWork

Forced Oscillations

In this Lecture, we will talk about the systems with forced oscillations.

We have the differential equation

$$
mx^{\prime\prime}+cx^{\prime}+kx=F(t)
$$

with

$$
F(t)=F_0\cos\omega t\qquad\text{or}\qquad F(t)=F_0\sin\omega t
$$

where the constant F_0 is the amplitude of the periodic force and ω is its circular frequency.

Undamped Forced Oscillations

We set $c=0$ and consider

$$
mx'' + kx = F_0 \cos \omega t \tag{1}
$$

Discussion:

By the previous lectures, the complementary function is

 $x_c = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t$,

where $w_0 = \sqrt{\frac{k}{m}} \Rightarrow k = w_0^2 m$.

- Assume $w_0 \neq w$. we want to find a particular solution x_p of Eq(1).
- Assume $x_p = A \cos \omega t$, $x_p'' = -A\omega^2 \cos wt$ then

$$
mx''_p + kx_p = -Am\omega^2\cos wt + kA\cos \omega t = F_0\cos wt\\ \Rightarrow A\left(k-m\omega^2\right) = F_0 \Rightarrow A = \frac{F_0}{k-mw^2} = \frac{F_0/m}{\omega_0^2-w^2},
$$

the last equation is from the fact that $k=\omega_0^2m$.

• Thus

$$
x_p=\frac{F_0/m}{\omega_0^2-\omega^2}{\rm cos}\,\omega t
$$

• Therefore the general solution

$$
x(t) = x_c(t) + x_p(t) = c_1 \cos w_0 t + c_2 \sin \omega_0 t + \frac{F_0/m}{\omega_0^2 - \omega^2} \cos \omega t
$$

$$
\Rightarrow x(t) = C \cos (\omega_0 t - \alpha) + \frac{F_0/m}{\omega_0^2 - \omega^2} \cos \omega t
$$

• So $x(t)$ is a superposition of two oscillations.

Resonance

Recall on previous page, we have the particular solution of $m x'' + k x = F_0 \cos \omega t\,$ is given by

- $x_p(t) = \frac{F_0/m}{\omega_0^2 \omega^2} \cos \omega t$, where $\omega_0 = \sqrt{\frac{k}{m}}$
- Resonance occurs when $\omega_0^2 = \omega^2$.
	- Roughly speaking, mechanical resonance is the phenomenon where a mechanical system vibrates with increased amplitude when the frequency of its oscillations matches the system's natural frequency.

Reading material on resonance:

- Mechanical resonance
- Tacoma Narrows Bridge

Example 1 Express the solution of the given initial value problem as a sum of two oscillations. Graph the solution function $x(t)$ in such a way that you can identify and label its period.

$$
x'' + 25x = 9\cos 2t; \qquad x(0) = 0, \quad x'(0) = 0
$$

ANS: Find x_c $r^2+2s=0$ \Rightarrow $r = \pm s\sqrt{3}$ $x_c = C_1 \cos 5t + C_2 \sin 5t$ Find x_p . Assume $x_p = A \cos \omega t$, then $x_p^{\prime\prime} = -4A \cos \omega t$. $x_1^{2} + 25x_1 = 9cos 2t \implies (-4A + 25A) \cos 2t = 9cos 2t$ \Rightarrow 2/A = 9 \Rightarrow A = $\frac{3}{2}$ The general solution for nonhomogeneous egn is $X(t) = X_{c} + X_{p} = C_{1}(055t + C_{2}445t + \frac{3}{7}cos 2t)$ As $x(0)=0$, $x(0)=C_1+\frac{3}{7}=0 \Rightarrow C_1=-\frac{3}{7}$ As $x'(0)=0$, $x'(t)=-5C$, sinst $+5C$ 2 $cos 5t - \frac{6}{7} sin 2t$ $X'(0) = fC_1 = 0 \implies C_1 = 0$ l hus. $x(t) = -\frac{3}{7}$ cosst $t + \frac{3}{7}$ cosst, which is a sum of two oscillations

The period of xits is the least common multiple of the periods of the two oscillations $\frac{2\pi}{5}$ and $\frac{2\pi}{2}$, which iS 2 π

Damped Forced Oscillations

$$
mx'' + cx' + kx = F_0 \cos \omega t
$$

- **transient solution** $x_{\text{tr}}(t) = x_c(t)$, $x_c(t) \rightarrow 0$ as $t \rightarrow \infty$.
- steady periodic solution $x_{\text{sp}}(t) = x_p(t)$

Example 2. Consider the initial value problem

$$
mx'' + cx' + kx = F(t), \quad x(0) = 0, \quad x'(0) = 0
$$

modeling the motion of a spring-mass-dashpot system initially at rest and subjected to an applied force $F(t)$, where the unit of force is the Newton (N).

Assume that $m=2$ kilograms, $c=8$ kilograms per second, $k=80$ Newtons per meter, and $F(t) = 20\sin(6t)$ Newtons.

(1) Solve the initial value problem.

(2) Determine the long-term behavior of the system. Is $\displaystyle \lim_{t\to \infty} x(t)=0$?

ANS : CI) We have

$$
2x'' + 8x' + 80x = 20 \sin 6t, x(0) = 0, x'(0) = 0
$$
\nThe corresponding homogeneous eqn is
\n
$$
2x'' + 8x' + 80x = 0 \Rightarrow x'' + 4x' + 40x = 0
$$
\nThe char eqn is
\n
$$
x^2 + 4x + 40 = 0
$$
\n
$$
\Rightarrow r_{1,2} = \frac{-4 \pm \sqrt{16 - 4 \times 40}}{2} = -2 \pm 6i
$$
\nThus $x_c = e^{-2t}$ (c, cos 6t + c, sin 6t)
\nNext, we want + to find x_p .
\nAssume $x_p(t) = A \cosh t + B \sinh t$.

$$
\Rightarrow C_{2} = \frac{15}{31} \cdot \frac{1}{6} = \frac{5}{74}
$$

Thus we have the Solution to the initial value
problem

$$
x(t) = -\frac{15}{31}cost + \frac{5}{74}sinbt + \frac{15}{31}e^{-2t}cost + \frac{5}{74}e^{-2t}sinbt
$$

Remark: In your WebWork, you might need to
convert the fractions to digits if you keep
getting an error. For example, the above solution
can be typed as

 $X(t) = e^{-(2*t)[*0.405405*cos(6*t)+0.0675674*sin(6*t)]+0.405405*cos(6*t)+0.0675676*sin(6*t))}$

(a)
$$
f|_{S} e^{-3t} \rightarrow 0
$$
 as $t \rightarrow \infty$, we have
\n
$$
\lim_{t \to \infty} x(t) = x_{\rho} = -\frac{15}{37} \cosh t + \frac{5}{74} \sinh t
$$
\nor
\n
$$
\lim_{t \to \infty} x(t) = -0.405405 \cos(6*t) + 0.0675676 \sin(6*t))
$$

Exercises Related to WebWork

Exercise 3 and 4 are related to the mass-spring-dashpot system. Exercise 5 and 6 are related to accelerationvelocity models.

Exercise 3.

A spring with a 5-kg mass and a damping constant 1 can be held stretched 1 meters beyond its natural length by a force of 3 newtons. Suppose the spring is stretched 2 meters beyond its natural length and then released with zero velocity.

(1) In the notation of the text, what is the value c^2-4mk ?

(2) Find the position of the mass, in meters, after t seconds.

Ans: (1)
$$
F_{5} = -kx \Rightarrow -3 = -k \cdot 1 \Rightarrow k = 3
$$

\n
$$
C^{2} - 4mk = 1^{2} - 4x5 \times 3 = 1 - 60 = -59
$$
 m²h₁²/sec²
\n(a) Use have
\n $mx'' + c\alpha' + kx = 0, x(0) = 2, x'(0) = 0$
\n
$$
\Rightarrow 5x'' + x' + 3x = 0, x(0) = 2, x'(0) = 0
$$

\nSolving $5r^{2} + r + 3 = 0 \Rightarrow r_{1/2} = \frac{-1 \pm \sqrt{1 - 4x5x}}{2x5} = \frac{-1 \pm \sqrt{-59}}{10}$
\nThus $r_{1/2} = \frac{-1 \pm \sqrt{19}}{10}$
\nSo the general solution is
\n
$$
x(t) = e^{-\frac{1}{10}t} \cdot (C_{1} \cos \frac{\sqrt{59}}{10}t + C_{2} \sin \frac{\sqrt{59}}{10}t)
$$

\nAs $x(0) = 2 \Rightarrow x(0) = C_{1} = 2$
\n
$$
x'(t) = -\frac{1}{10}e^{-\frac{1}{10}t}((C_{1} \cos \frac{\sqrt{59}}{10}t + C_{2} \sin \frac{\sqrt{59}}{10}t)
$$

\n
$$
+ e^{-\frac{1}{10}t}(-\frac{\sqrt{13}}{10}C_{1} \sin \frac{\sqrt{59}}{10}t + \frac{\sqrt{13}}{10}C_{2} \cos \frac{\sqrt{59}}{10}t)
$$

\nAs $x'(0)=0, x'(0)=-\frac{1}{10}(\frac{1}{10})^{2} + \frac{\sqrt{19}}{10}C_{2} = 0 \Rightarrow C_{2} = \frac{10}{\sqrt{19}} \cdot \frac{1}{5} = \frac{2}{\sqrt{19}}$
\nhus $x(t) = e^{-\frac{1}{10}t} (2 \cos \frac{\sqrt{51}}{10}t + \frac{2}{\sqrt{19}} \sin \frac{\sqrt{19}}{10}t)$

Exercise 4.

Suppose a spring with spring constant 4 N/m is horizontal and has one end attached to a wall and the other end attached to a 3 kg mass. Suppose that the friction of the mass with the floor (i.e., the damping constant) is $1 N \cdot s/m$.

(1) Set up a differential equation that describes this system.

- (2) Find the general solution to your differential equation from the previous part.
- (3) Is this system under damped, over damped, or critically damped?
- (4) What is the value of the damping constant that would make the system critically damped?
) $3x''+x'+4x=0$

(I)
$$
3x'' + x' + 4x = 0
$$

(2) We have char . $\left\{ \begin{array}{c} 1 \end{array} \right.$ $3r^{2} + r + 4 = 0 \implies r_{1,2} = \frac{-1 \pm \sqrt{1-48}}{6}$ $1\pm\sqrt{1-48}$ = $-1 \pm \sqrt{47} i$ 6 6 $3r + r + 4 = 0 \Rightarrow r_{1,2} = -$
Thus $x(t) = e^{-\frac{t}{6}}$ $(c, \omega s) = \frac{\sqrt{47}}{6}$ 6
 $t) + C_1 \sin(\frac{\sqrt{41}}{6}t)$

(3) . As we have two complex solutions to the char egh , we know the system is unden damped

(⁴) Assume for Cro the system

 $3x'' + c x' + 4x = 0$ is critically damped. We need Δ = c^{\pm} 4x3x4 = 0 \Rightarrow $C = 45$

Exercise 5.

A car traveling at 40ft/sec decelerates at a constant 2 feet per second squared. How many feet does the car travel before coming to a complete stop?

Solution. Let $s(t)$ be the distance covered by the car t seconds after stepping on the brakes. Suppose the car decelerates at q feet per second squared. Then

$$
s''(t)=-g
$$

and

$$
s^\prime(t)=-gt+v_0
$$

where v_0 is the speed of the car at time 0 . Integrating again gives

$$
s(t)=-\frac{gt^2}{2}+v_0t.
$$

The integration constant in this case is 0 since at time $t=0$ the car has covered a distance of 0 feet. We are asking how far the car travels until it comes to a stop. At that time the speed is 0 , which gives

$$
t=\frac{v_0}{g}.
$$

Substituting this time into the distance formula gives

 $s=-\frac{gv_0^2}{2g^2}+\frac{v_0^2}{q}=-\frac{v_0^2}{2g}+\frac{v_0^2}{q}=\frac{v_0^2}{2g}.$

Substituting

$$
v_0=40 {\rm ft/sec},\quad g=2 {\rm ft/sec^2}
$$

gives the answer:

$$
s\approx 400.00\;{\rm feet}\;.
$$

Exercise 6.

A ball is shot straight up into the air with initial velocity of 50ft/sec . Assuming that the air resistance can be ignored, how high does it go? (Assume that the acceleration due to gravity is 32ft per second squared.)

Solution.

We have

$$
\frac{dv}{dt}=-g
$$

where q is the acceleration due to gravity (32ft/s^2 , downward).

So we have

$$
v(t) = -gt + C
$$

We know that the initial velocity of the ball $v(0)$ is 50ft/s (upwards), so we can use this to solve for the constant of integration C :

$$
50 = -0 + C \Rightarrow C = 50
$$

Thus, the velocity of the ball as a function of time is:

$$
v(t) = -32t + 50
$$

The ball reaches its highest point when its velocity is 0 (it momentarily stops moving up before starting to fall down). We set $v(t) = 0$ and solve for t :

$$
-32t+50=0
$$

Solving this we know the ball reaches its highest point at $t = 25/16$ seconds after it is shot.

To find the maximum height reached by the ball, we integrate the velocity function to get the position function $s(t):$

$$
s(t) = \int v(t)dt = \int (-32t + 50)dt = -16t^2 + 50t + C
$$

We know that at $t = 0$, the ball is at the initial position $s(0) = 0$ (assuming it is shot from ground level), which allows us to solve for C :

$$
0 = -16(0)^2 + 50(0) + C \Rightarrow C = 0
$$

So, the position function is:

$$
s(t)=-16t^{2}+50t\\
$$

We have $s(25/16) \approx 39.0625$.