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Forced Oscillations
In this Lecture, we will talk about the systems with forced oscillations.
We have the differential equation
mz" + cx' + kx = F(t)
with
F(t) = Fycoswt or F(t) = Fysinwt

where the constant F}y is the amplitude of the periodic force and w is its circular frequency.

Undamped Forced Oscillations
We set ¢ = 0 and consider

mz" + kx = Fy cos wt (1)
Discussion:

e By the previous lectures, the complementary function is

k 2
wherewg = 4/ — = k = wym.
m

e Assume wy #* w. we want to find a particular solution z,, of Eq(1).

T, = c1 coswyt + co sin wyt,

e Assumezx, = Acosuwt, .’EZ = — Aw? cos wt then
ma, + kx, = — Amw? cos wt + kA cos wt = F cos wt

F() o F()/m
k — mw? wg—w2’

:>A(k—mw2):F0:>A:

the last equation is from the fact that k = wgm.



e Thus

F()/m
Ty = cos wt
w2 — w?
0

e Therefore the general solution

Fy/m
z(t) = z(t) + z,(t) = c1 coswopt + c2 sinwpt + Lcos wt

w? — w?
Fy/m
= z(t) = C cos (wot — o) + 20—/coswt
wp — w?

e Sox(t) is a superposition of two oscillations.

Resonance

Recall on previous page, we have the particular solution of ma” + kx = Fj coswt is given by

Fy/m
° wp(t) = C‘)20f/w2coswt, where wy = %
0

e Resonance occurs when wi = w?.

o Roughly speaking, mechanical resonance is the phenomenon where a mechanical system vibrates
with increased amplitude when the frequency of its oscillations matches the system's natural
frequency.

Reading material on resonance:

e Mechanical resonance

e Tacoma Narrows Bridge




Example 1 Express the solution of the given initial value problem as a sum of two oscillations. Graph the
solution function z(t) in such a way that you can identify and label its period.

z" + 25z = 9 cos 2t; z(0)=0, z'(0)=0
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Damped Forced Oscillations
mz" + cz’' + kx = F cos wt

e transient solution z,(t) = z.(t), z.(t) — 0ast — oo.

e steady periodic solution z,(t) = z,(t)

Example 2. Consider the initial value problem
mz" + cx' + kx = F(t), z(0)=0, =z'(0)=0

modeling the motion of a spring-mass-dashpot system initially at rest and subjected to an applied force F(t),
where the unit of force is the Newton (N).

Assume that m = 2 kilograms, ¢ = 8 kilograms per second, k = 80 Newtons per meter, and
F(t) = 20sin(6t) Newtons.

(1) Solve the initial value problem.

(2) Determine the long-term behavior of the system. Is tlim z(t) = 0?
—00
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Exercises Related to WebWork

Exercise 3 and 4 are related to the mass-spring-dashpot system. Exercise 5 and 6 are related to acceleration-
velocity models.

Exercise 3.

A spring with a 5-kg mass and a damping constant 1 can be held stretched 1 meters beyond its natural length
by a force of 3 newtons. Suppose the spring is stretched 2 meters beyond its natural length and then released
with zero velocity.

(1) In the notation of the text, what is the value ¢ — 4mk ?

(2) Find the position of the mass, in meters, after ¢ seconds.
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Exercise 4.

Suppose a spring with spring constant 4 N /m is horizontal and has one end attached to a wall and the other
end attached to a 3 kg mass. Suppose that the friction of the mass with the floor (i.e., the damping constant) is

1N-s/m.

(1) Set up a differential equation that describes this system.

(2) Find the general solution to your differential equation from the previous part.
(3) Is this system under damped, over damped, or critically damped?

(4) What is the value of the damping constant that would make the system critically damped?
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Exercise 5.

A car traveling at 40ft /sec decelerates at a constant 2 feet per second squared. How many feet does the car
travel before coming to a complete stop?

Solution. Let s(t) be the distance covered by the car t seconds after stepping on the brakes. Suppose the car
decelerates at g feet per second squared. Then

s"(t) = —g

and
s'(t) = —gt + o

where vg is the speed of the car at time 0 . Integrating again gives
42
s(t) = 5 + vot.
2
The integration constant in this case is 0 since at time ¢ = 0 the car has covered a distance of 0 feet. We are
asking how far the car travels until it comes to a stop. At that time the speed is 0, which gives

v
t=—.
9
Substituting this time into the distance formula gives
_9% L % % %%
29> 9 29 g9 2

Substituting
vy = 40ft /sec, g = 2ft/sec?
gives the answer:

s ~ 400.00 feet .



Exercise 6.

A ball is shot straight up into the air with initial velocity of 50ft /sec. Assuming that the air resistance can be
ignored, how high does it go? (Assume that the acceleration due to gravity is 32ft per second squared.)

Solution.

We have

dv

a Y

where g is the acceleration due to gravity ( 32ft/s2, downward).
So we have
v(t) = —gt+C

We know that the initial velocity of the ball v(0) is 50£ft /s (upwards), so we can use this to solve for the
constant of integration C':

50=—-0+C=C=50
Thus, the velocity of the ball as a function of time is:
v(t) = —32t + 50

The ball reaches its highest point when its velocity is 0 (it momentarily stops moving up before starting to fall
down). We set v(t) = 0 and solve for ¢:

—32t+50=0

Solving this we know the ball reaches its highest point at ¢ = 25/16 seconds after it is shot.

To find the maximum height reached by the ball, we integrate the velocity function to get the position function

s(t):
s(t) = /v(t)dt = /(—32t + 50)dt = —16t*> + 50t + C

We know that at t = 0, the ball is at the initial position s(0) = 0 (assuming it is shot from ground level), which
allows us to solve for C':

0=-16(0)>+5000)+C=C=0
So, the position function is:
s(t) = —16t* + 50t

We have 5(25/16) ~ 39.0625.



